题目内容

已知a2+4b2=1(a,b∈R),则
2ab
|a|+2|b|
的最大值为______.
a2+4b2=1≥4|ab|.
∴|ab|≤
1
4

∵a2+4b2=(|a|+2|b|)2-4|ab|=1.
2ab
|a|+2|b|
=
2ab
1+4|ab|
2|ab|
1+4|ab|
=
4(ab)2
1+4|ab|
=
4
(
1
|ab|
+2)2-4

∵|ab|≤
1
4

1
|ab|
≥4,
2ab
|a|+2|b|
的最大值为
4
32
=
2
4

故答案为:
2
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网