题目内容
设A(x1,y1)、B(x2,y2)是函数f(x)=
-
图象上任意两点,且x1+x2=1.
(Ⅰ)求y1+y2的值;
(Ⅱ)若Tn=f(0)+f(
)+f(
)+…+f(
)(其中n∈N*),求Tn;
(Ⅲ)在(Ⅱ)的条件下,设an=
(n∈N*),若不等式an+an+1+an+2+…+a2n-1>loga(1-2a)对任意的正整数n恒成立,求实数a的取值范围.
| 3 |
| 2 |
| ||
2x+
|
(Ⅰ)求y1+y2的值;
(Ⅱ)若Tn=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n |
| n |
(Ⅲ)在(Ⅱ)的条件下,设an=
| 2 |
| Tn |
(Ⅰ)∵A(x1,y1)、B(x2,y2)是函数f(x)=
-
图象上任意两点,且x1+x2=1.
y1+y2=
-
+
-
=3-(
+
)=3-
=3-
=2.(4分)
(Ⅱ)由(Ⅰ)可知,当x1+x2=1时,y1+y2=2,
由Tn=f(0)+f(
)+f(
)+…+f(
)得,Tn=f(
)+…+f(
)+f(
)+f(0),
∴2Tn=[f(0)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(0)]=2(n+1),
∴Tn=n+1.(8分)
(Ⅲ)由(Ⅱ)得,an=
=
,不等式an+an+1+an+2+…+a2n-1>loga(1-2a)即为
+
+…+
>loga(1-2a),
设Hn=
+
+…+
,
则 Hn+1=
+
+…+
+
+
,
∴Hn+1-Hn=
+
-
=
-
>0,
∴数列{Hn}是单调递增数列,
∴(Hn)min=T1=1,(10分)
要使不等式恒成立,只需loga(1-2a)<1,
即loga(1-2a)<logaa,
∴
或
解得0<a<
.
故使不等式对于任意正整数n恒成立的a的取值范围是(0,
).(12分)
| 3 |
| 2 |
| ||
2x+
|
y1+y2=
| 3 |
| 2 |
| ||
2x1+
|
| 3 |
| 2 |
| ||
2x2+
|
=3-(
| ||
2x1+
|
| ||
2x2+
|
4+
| ||
2x1+x2+
|
4+
| ||
2+
|
(Ⅱ)由(Ⅰ)可知,当x1+x2=1时,y1+y2=2,
由Tn=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n |
| n |
| n |
| n |
| 2 |
| n |
| 1 |
| n |
∴2Tn=[f(0)+f(
| n |
| n |
| 1 |
| n |
| n-1 |
| n |
| n |
| n |
∴Tn=n+1.(8分)
(Ⅲ)由(Ⅱ)得,an=
| 2 |
| Tn |
| 2 |
| n+1 |
| 2 |
| n+1 |
| 2 |
| n+2 |
| 2 |
| 2n |
设Hn=
| 2 |
| n+1 |
| 2 |
| n+2 |
| 2 |
| 2n |
则 Hn+1=
| 2 |
| n+2 |
| 2 |
| n+3 |
| 2 |
| 2n |
| 2 |
| 2n+1 |
| 2 |
| 2n+2 |
∴Hn+1-Hn=
| 2 |
| 2n+1 |
| 2 |
| 2(n+1) |
| 2 |
| n+1 |
| 2 |
| 2n+1 |
| 2 |
| 2n+2 |
∴数列{Hn}是单调递增数列,
∴(Hn)min=T1=1,(10分)
要使不等式恒成立,只需loga(1-2a)<1,
即loga(1-2a)<logaa,
∴
|
|
解得0<a<
| 1 |
| 3 |
故使不等式对于任意正整数n恒成立的a的取值范围是(0,
| 1 |
| 3 |
练习册系列答案
相关题目