题目内容

设A(x1,y1)、B(x2,y2)是函数f(x)=
3
2
-
2
2x+
2
图象上任意两点,且x1+x2=1.
(Ⅰ)求y1+y2的值;
(Ⅱ)若Tn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
(其中n∈N*),求Tn
(Ⅲ)在(Ⅱ)的条件下,设an=
2
Tn
(n∈N*),若不等式an+an+1+an+2+…+a2n-1>loga(1-2a)对任意的正整数n恒成立,求实数a的取值范围.
(Ⅰ)∵A(x1,y1)、B(x2,y2)是函数f(x)=
3
2
-
2
2x+
2
图象上任意两点,且x1+x2=1.
y1+y2=
3
2
-
2
2x1+
2
+
3
2
-
2
2x2+
2

=3-(
2
2x1+
2
+
2
2x2+
2
)
=3-
4+
2
(2x1+2x2)
2x1+x2+
2
(2x1+2x2)+2
=3-
4+
2
(2x1+2x2)
2+
2
(2x1+2x2)+2
=2.(4分)
(Ⅱ)由(Ⅰ)可知,当x1+x2=1时,y1+y2=2,
Tn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
得,Tn=f(
n
n
)+…+f(
2
n
)+f(
1
n
)+f(0)

2Tn=[f(0)+f(
n
n
)]+[f(
1
n
)+f(
n-1
n
)]+…+[f(
n
n
)+f(0)]=2(n+1)

∴Tn=n+1.(8分)
(Ⅲ)由(Ⅱ)得,an=
2
Tn
=
2
n+1
,不等式an+an+1+an+2+…+a2n-1>loga(1-2a)即为
2
n+1
+
2
n+2
+…+
2
2n
>loga(1-2a)

设Hn=
2
n+1
+
2
n+2
+…+
2
2n

则 Hn+1=
2
n+2
+
2
n+3
+…+
2
2n
+
2
2n+1
+
2
2n+2

Hn+1-Hn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0

∴数列{Hn}是单调递增数列,
∴(Hnmin=T1=1,(10分)
要使不等式恒成立,只需loga(1-2a)<1,
即loga(1-2a)<logaa,
0<a<1
1-2a>0
1-2a>a
a>1
1-2a>0
1-2a<a

解得0<a<
1
3

故使不等式对于任意正整数n恒成立的a的取值范围是(0,
1
3
)
.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网