题目内容
1.y=$\sqrt{(\frac{1}{2})^{2x-1}-\frac{1}{16}}$的定义域是(-∞,$\frac{5}{2}$].分析 根据函数y的解析式,得出${(\frac{1}{2})}^{2x-1}$-$\frac{1}{16}$≥0,再利用指数函数的单调性求出x的取值范围即可.
解答 解:∵y=$\sqrt{(\frac{1}{2})^{2x-1}-\frac{1}{16}}$,
∴${(\frac{1}{2})}^{2x-1}$-$\frac{1}{16}$≥0,
即${(\frac{1}{2})}^{2x-1}$≥${(\frac{1}{2})}^{4}$,
∴2x-1≤4,
解得x≤$\frac{5}{2}$,
∴函数y的定义域是(-∞,$\frac{5}{2}$].
故答案为:(-∞,$\frac{5}{2}$].
点评 本题考查了指数函数的图象与性质问题,也考查了求函数定义域的应用问题,是基础题.
练习册系列答案
相关题目
11.已知直线x+y-a=0(a>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≥|$\overrightarrow{AB}$|,那么a的取值范围是( )
| A. | ($\sqrt{2}$,+∞) | B. | 2,+∞) | C. | [2,2$\sqrt{2}$) | D. | [$\sqrt{2}$,2$\sqrt{2}$) |
16.已知x,y满足不等式组$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}\end{array}\right.$,若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是( )
| A. | $\frac{2}{7}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{3}$ |
2.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),右焦点F到渐近线的距离为2,F到原点的距离为3,则双曲线C的离心率e为( )
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
9.已知定义在R上的函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,1]时,f(x)=x(1-$\frac{2}{{e}^{x}+1}$),则( )
| A. | f(-3)$<f(2)<f(\frac{5}{2})$ | B. | f($\frac{5}{2}$)<f(-3)<f(2) | C. | f(2)$<f(-3)<f(\frac{5}{2})$ | D. | f(2)$<f(\frac{5}{2})<f(-3)$ |
7.若平面α内有无数条直线与平面β平行,则α与β的位置关系是( )
| A. | 平行 | B. | 相交 | C. | 平行或相交 | D. | 重合 |