题目内容
在△ABC中,已知角A,B所对的边分别为a,b,且a=25,b=39,cosA=-
.
(Ⅰ)求sinB的值;
(Ⅱ)求cos(2B-
)的值.
| 12 |
| 13 |
(Ⅰ)求sinB的值;
(Ⅱ)求cos(2B-
| π |
| 4 |
(Ⅰ)在△ABC中,sinA=
=
=
(3分)
由正弦定理,得
=
.所以sinB=
sinA=
×
=
(7分)
(Ⅱ)因为cosA<0,所以角A为钝角,从而角B为锐角,于是cosB=
=
(9分)
所以cos2B=2cos2B-1=
,sin2B=2sinBcosB=
(11分)
∴cos(2B-
)=cosBcos
+sinBsin
=
(14分)
| 1-cos2A |
1-(-
|
| 5 |
| 13 |
由正弦定理,得
| a |
| sinA |
| b |
| sinB |
| b |
| a |
| 39 |
| 25 |
| 5 |
| 13 |
| 3 |
| 5 |
(Ⅱ)因为cosA<0,所以角A为钝角,从而角B为锐角,于是cosB=
| 1-sin2B |
| 4 |
| 5 |
所以cos2B=2cos2B-1=
| 7 |
| 25 |
| 24 |
| 25 |
∴cos(2B-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
31
| ||
| 50 |
练习册系列答案
相关题目