题目内容
分析:不妨考查沿x轴正方向滚动,先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,得出函数的图象,即可得到结论.
解答:
解:考查P点的运动轨迹,不妨考查正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动
个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,再以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:
S=2×
×π+2×
×1×1+
×2π=π+1
故选A.
| 1 |
| 4 |
S=2×
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
故选A.
点评:本题考查函数图象的变化,其中根据已知画出正方形转动过程中的一个周期内的图象,利用数形结合的思想对本题进行分析是解答本题的关键.
练习册系列答案
相关题目