ÌâÄ¿ÄÚÈÝ
20£®¶¨Ò壺Èç¹ûº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏ´æÔÚx1£¬x2£¨a£¼x1£¼x2£¼b£©£¬Âú×ãf¡ä£¨x1£©=f¡ä£¨x2£©=$\frac{f£¨a£©-f£¨b£©}{a-b}$£¬Ôò³ÆÊýx1£¬x2Ϊ[a£¬b]Éϵġ°¶ÔÍûÊý¡±£¬º¯Êýf£¨x£©Îª[a£¬b]Éϵġ°¶ÔÍûº¯Êý¡±£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺£¨1£©¶þ´Îº¯Êýf£¨x£©=x2+mx+nÔÚÈÎÒâÇø¼ä[a£¬b]É϶¼²»¿ÉÄÜÊÇ¡°¶ÔÍûº¯Êý¡±£»
£¨2£©º¯Êýf£¨x£©=$\frac{1}{3}$x3-x2+2ÊÇ[0£¬2]Éϵġ°¶ÔÍûº¯Êý¡±£»
£¨3£©º¯Êýf£¨x£©=x+sinxÊÇ[$\frac{¦Ð}{6}$£¬$\frac{11¦Ð}{6}$]Éϵġ°¶ÔÍûº¯Êý¡±£»
£¨4£©f£¨x£©Îª[a£¬b]Éϵġ°¶ÔÍûº¯Êý¡±£¬Ôòf£¨x£©ÔÚ[a£¬b]Éϲ»µ¥µ÷
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨1£©£¬£¨2£©£¬£¨4£©£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
·ÖÎö ¸ù¾Ýº¯ÊýµÄ¶¨Òå½áºÏ¶þ´Îº¯ÊýÐÔÖÊÅжϣ¨1£©£¬¸ù¾Ýº¯ÊýµÄµ¼ÊýÅжϣ¨2£©£¬¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÅжϣ¨3£©£¬¸ù¾Ý¶¨ÒåÅжϣ¨4£©¼´¿É£®
½â´ð ½â£º£¨1£©Éè¶þ´Îº¯Êýf£¨x£©=x2+mx+nÔÚÇø¼ä[a£¬b]ÉÏÊÇ¡°¶ÔÍûº¯Êý¡±£¬
Ôòf¡ä£¨x1£©=f¡ä£¨x2£©=2x1+m=2x2+m£¬¡àx1=x2£¬Ó붨Òå²»·û£¬
¹Ê¶þ´Îº¯Êýf£¨x£©=x2+mx+nÔÚÈÎÒâÇø¼ä[a£¬b]É϶¼²»¿ÉÄÜÊÇ¡°¶ÔÍûº¯Êý¡±£¬£¨1£©ÕýÈ·£»
£¨2£©¡ßº¯Êýf£¨x£©=$\frac{1}{3}$x3-x2+2£¬
¡àf¡ä£¨x£©=x2-2x£¬$\frac{f£¨a£©-f£¨b£©}{a-b}$=$\frac{f£¨0£©-f£¨2£©}{0-2}$=$\frac{2-£¨\frac{8}{3}-2£©}{0-2}$=-$\frac{2}{3}$£¬
Áîx2-2x=-$\frac{2}{3}$£¬½âµÃ£ºx1=$\frac{3-\sqrt{3}}{3}$£¬x2=$\frac{3+\sqrt{3}}{3}$£¬
¶ø0£¼x1£¼x2£¼2£¬
¹Êf£¨x£©ÊÇ[0£¬2]Éϵġ°¶ÔÍûº¯Êý¡±£¬£¨2£©ÕýÈ·£»
£¨3£©¡ßº¯Êýf£¨x£©=x+sinx£¬
¡àf¡ä£¨x£©=1+cosx£¬$\frac{f£¨\frac{¦Ð}{6}£©-f£¨\frac{11¦Ð}{6}£©}{\frac{¦Ð}{6}-\frac{11¦Ð}{6}}$=$\frac{3}{5¦Ð}$-1£¬
Áî1+cosx=$\frac{3}{5¦Ð}$-1£¬¡àcosx=$\frac{3}{5¦Ð}$-2£¼-1£¬Î޽⣬
¹Êf£¨x£©=x+sinx²»ÊÇ[$\frac{¦Ð}{6}$£¬$\frac{11¦Ð}{6}$]Éϵġ°¶ÔÍûº¯Êý¡±£¬£¨3£©´íÎó£»
£¨4£©f£¨x£©Îª[a£¬b]Éϵġ°¶ÔÍûº¯Êý¡±£¬Ôòf¡ä£¨x£©=0ÔÚ[a£¬b]ÉÏÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬
Ôòf£¨x£©ÔÚ[a£¬b]Éϲ»µ¥µ÷£¬£¨4£©ÕýÈ·£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ £¨1£©£¬£¨2£©£¬£¨4£©£¬
¹Ê´ð°¸Îª£º£¨1£©£¬£¨2£©£¬£¨4£©£®
µãÆÀ ±¾ÌâÊÇÒ»µÀж¨Ò庯ÊýÎÊÌ⣬¿¼²é¶Ôº¯ÊýÐÔÖʵÄÀí½âºÍÓ¦Ó㮽âÌâʱÊ×ÏÈÇó³öº¯Êýf£¨x£©µÄµ¼º¯Êý£¬ÔÙ½«Ð¶¨Ò庯ÊýµÄÐÔÖÊת»¯Îªµ¼º¯ÊýµÄÐÔÖÊ£¬½ø¶ø½áºÏº¯ÊýµÄÁãµãÇé¿öÈ·¶¨ËùÂú×ãµÄÌõ¼þ£¬½âÖ®¼´µÃËùÇó£®ÊôÓÚÖеµÌ⣮
| A£® | 18 | B£® | 17 | C£® | 16 | D£® | 15 |
| A£® | 3x+y-5=0 | B£® | x+3y-7=0 | C£® | x-3y+5=0 | D£® | x-3y-5=0 |