题目内容
19(本小题满分14分)已知
,函数
,
(其中
为自然对数的底数).(1)求函数
在区间
上的最小值;(2)是否存在实数
,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.
(Ⅰ) 见解析 (Ⅱ) 不存在
解析:
(1)∵
,∴
.令
,得
.
①若
,则
,
在区间
上单调递增,此时函数
无最小值.
②若
,当
时,
,函数
在区间
上单调递减,
当
时,
,函数
在区间
上单调递增,
所以当
时,函数
取得最小值
.
③若
,则
,函数
在区间
上单调递减,
所以当
时,函数
取得最小值
.
综上可知,当
时,函数
在区间
上无最小值;
当
时,函数
在区间
上的最小值为
;
当
时,函数
在区间
上的最小值为
.
(2)∵
,
,∴ ![]()
.由(1)可知,当
时,
.
此时
在区间
上的最小值为
,即
.
当
,
,
,∴
.
曲线
在点
处的切线与
轴垂直等价于方程
有实数解. 而
,即方程
无实数解. 故不存在
,使曲线
在点
处的切线与
轴垂直.
(本小题满分14分)
某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
| 序 号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 身高x(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
| 脚长y( 码 ) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
| 序 号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 身高x(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
| 脚长y( 码 ) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的
联列表:
| 高 个 | 非高个 | 合 计 | |
| 大 脚 | |||
| 非大脚 | 12 | ||
| 合 计 | 20 |
(Ⅱ)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:
①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.