题目内容
求证:2<(1+| 1 | n |
分析:由二项式定理知(1+
)n=2+
×
+
×
+…+
×
<2+
+
+
+…+
<2+
+
+
+…+
=2+
=3-(
)n-1<3.且(1+
)n=1+1+Cn2×
+Cn3×
+…+Cnn×
>2.由此知2<(1+
)n<3.
| 1 |
| n |
| 1 |
| 2! |
| n(n-1) |
| n2 |
| 1 |
| 3! |
| n(n-1)(n-2) |
| n3 |
| 1 |
| n! |
| n×(n-1)××2×1 |
| nn |
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| 4! |
| 1 |
| n! |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n2 |
| 1 |
| n3 |
| 1 |
| nn |
| 1 |
| n |
解答:证明:(1+
)n=Cn0+Cn1×
+Cn2(
)2+…+Cnn(
)n
=1+1+Cn2×
+Cn3×
+…+Cnn×
=2+
×
+
×
+…+
×
<2+
+
+
+…+
<2+
+
+
+…+
=2+
=3-(
)n-1<3.
显然(1+
)n=1+1+Cn2×
+Cn3×
+…+Cnn×
>2.
所以2<(1+
)n<3.
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
=1+1+Cn2×
| 1 |
| n2 |
| 1 |
| n3 |
| 1 |
| nn |
=2+
| 1 |
| 2! |
| n(n-1) |
| n2 |
| 1 |
| 3! |
| n(n-1)(n-2) |
| n3 |
| 1 |
| n! |
| n×(n-1)××2×1 |
| nn |
<2+
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| 4! |
| 1 |
| n! |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
=2+
| ||||
1-
|
| 1 |
| 2 |
显然(1+
| 1 |
| n |
| 1 |
| n2 |
| 1 |
| n3 |
| 1 |
| nn |
所以2<(1+
| 1 |
| n |
点评:本题考查不等式的性质和应用,解题时要注意二项式定理和放缩法的合理运用.
练习册系列答案
相关题目