题目内容
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 | (n+1)•an |
分析:(Ⅰ)由已知:对于n∈N*,总有2Sn=an+an2成立,再写一式,两式相减,可得数列{an}是公差为1的等差数列,从而可求数列{an}的通项公式;
(Ⅱ)利用裂项法,可求数列{bn}的前n项和Tn.
(Ⅱ)利用裂项法,可求数列{bn}的前n项和Tn.
解答:解:(Ⅰ)由已知:对于n∈N*,总有2Sn=an+an2①成立
∴2Sn-1=an-1+an-1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1)
∵an,an-1均为正数,∴an-an-1=1(n≥2)
∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1,
∴an=n.(n∈N*)
(Ⅱ)由(Ⅰ)可知 bn=
=
-
∴Tn=(1-
)+(
-
)+…+(
-
)=
∴2Sn-1=an-1+an-1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1)
∵an,an-1均为正数,∴an-an-1=1(n≥2)
∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1,
∴an=n.(n∈N*)
(Ⅱ)由(Ⅰ)可知 bn=
| 1 |
| (n+1)•n |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查等差数列的通项,考查数列的求和,确定数列的通项是关键.
练习册系列答案
相关题目