题目内容
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an、Sn、(an)2成等差数列.(I)求数列{an}的通项公式;
(II)设bn=an(
| 1 |
| 2 |
| 1 |
| 2 |
分析:(I)由等差数列等差中项性质可知2Sn=an+an2把an=Sn-Sn-1代入得到an和an-1的关系式,整理得an-an-1=1进而可以推断数列{an}是公差为1的等差数列,再根据2S1=a1+a12求得a1,最后根据等差数列的通项公式可得数列{an}的通项公式.
(II)把(I)数列{an}的通项公式代入bn=an(
)n可得数列{bn}的通项公式.{bn}的通项公式是由等差数列和等比数列构成,进而可用错位相减法求得{bn}的前n项和Tn=2-
,进而推断Tn<2,又根据Tn+1-Tn=
>0推断{Tn}是递增数列可知T1是数列{Tn}最小项,综合可得Tn范围,原式得证.
(II)把(I)数列{an}的通项公式代入bn=an(
| 1 |
| 2 |
| 2+n |
| 2n |
| n+1 |
| 2n+1 |
解答:解:(I)由已知2Sn=an+an2∴2Sn-1=an-1+an-1 2,得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1),
∵an,an-1均为正数,∴an-an-1=1(n≥2)∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1∴an=n.(n∈N*)
(II)∵bn=an(
)n,由(I)知,bn=n(
)nTn=
+2(
)2+3(
)3+4(
)4++n(
)n
Tn=(
)2+2(
)3+3(
)4+(n-1)(
)n+n(
)n+1
∴
Tn=
+(
)2+(
)3+(
)4++(
)n-n(
)n+1
∴Tn=1+
+(
)2+(
)3++(
)n-1-n(
)n=
-
=2-
(n∈N*)
∵Tn+1-Tn=2-
-(2-
)=
-
=
>0,
∴{Tn}是递增数列,∴Tn≥T1=2-
=
又∵
>0,∴Tn=2-
<2,∴
≤Tn<2得证.
∴an+an-1=(an+an-1)(an-an-1),
∵an,an-1均为正数,∴an-an-1=1(n≥2)∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1∴an=n.(n∈N*)
(II)∵bn=an(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1-(
| ||
1-
|
| n |
| 2n |
| 2+n |
| 2n |
∵Tn+1-Tn=2-
| 3+n |
| 2n+1 |
| 2+n |
| 2n |
| 2+n |
| 2n |
| 3+n |
| 2n+1 |
| n+1 |
| 2n+1 |
∴{Tn}是递增数列,∴Tn≥T1=2-
| 1+2 |
| 2 |
| 1 |
| 2 |
又∵
| 2+n |
| 2n |
| 2+n |
| 2n |
| 1 |
| 2 |
点评:本题主要考查了等差数列的性质和用错位相减法数列求和的问题.属基础题.
练习册系列答案
相关题目