题目内容

若log4(x+2y)+log4(x-2y)=1,则|x|-|y|的最小值是______.
由题意可得 
x+2y>0
x-2y>0
(x+2y)(x-2y)=4
?
x>2|y|≥0
x2-4y2=4

由函数的图象的对称性知,只考虑y≥0的情况即可,因为x>0,所以只须求x-y的最小值.
令x-y=u代入x2-4y2=4中,有3y2-2uy+(4-u2)=0,
∵y∈R,∴△≥0,解得u≥
3

∴当x=
4
3
3
,y=
3
3
时,u=
3
,故|x|-|y|的最小值是
3

故答案为
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网