题目内容

已知函数f(x)=x2++alnx(x>0),
(Ⅰ)若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数y=f(x)为区间D上的“下凸函数”。试证当a≤0时,f(x)为“下凸函数”。
解:(1)

f(x)在[1,+∞)上单调递增,即在[1,+∞)上恒成立,

而a≥0时,在[1,+∞)上恒成立,

(2)a≤0时,


由均值不等式,

成立。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网