题目内容

20.自⊙O外一点p引切线与⊙O切于点A,M为PA的中点,过M引割线交⊙O于B、C两点.
求证:
(Ⅰ)PM2=MB•MC;
(Ⅱ)∠MCP=∠MPB.

分析 (Ⅰ)根据切割线定理,得到AM是MB和MC的比例中项,结合AM=MP即可证明PM2=MB•MC;
(Ⅱ)由MP2=MB•MC得$\frac{PM}{MC}=\frac{MB}{PM}$,再结合公共角∠BMP=∠PMC,得三角形BMP与三角形PMC相似,从而得到对应角相等,命题得证.

解答 证明:(Ⅰ)∵AM切圆于点A
∴AM2=MB•MC
又∵M为PA中点,AM=MP
∴MP2=MB•MC;
(Ⅱ)∵MP2=MB•MC,
∴$\frac{PM}{MC}=\frac{MB}{PM}$,
又∵∠BMP=∠PMC
∴△BMP∽△PMC(边角边)
∴∠MCP=∠MPB.

点评 本题考查了圆当中的比例线段,以及三角形相似的有关知识点,属于中档题.找到题中的相似三角形来证明角的相等,是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网