题目内容
已知向量
=(1,1),
=(0,
),设向量
=(cosa,sina)(a∈[0,π]),且
⊥(
-
),则tana=______.
| m |
| n |
| 1 |
| 5 |
| OA |
| m |
| OA |
| n |
由题意可知
-
=(cosα,sin α-
)
∵
⊥(
-
)∴
•(
-
)=0∴cosα+sinα-
=0
又因为sin2α+cos2α=1,a∈[0,π],
所以sinαcosα=-
∴tanα<0
sinαcosα=
=
=-
∴tanα=-
| OA |
| n |
| 1 |
| 5 |
∵
| m |
| OA |
| n |
| m |
| OA |
| n |
| 1 |
| 5 |
又因为sin2α+cos2α=1,a∈[0,π],
所以sinαcosα=-
| 12 |
| 25 |
∴tanα<0
sinαcosα=
| sinαcosα |
| sin2α+cos2a |
| tanα |
| tan2α+1 |
| 12 |
| 25 |
∴tanα=-
| 4 |
| 3 |
练习册系列答案
相关题目