题目内容
9、已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a的取值范围是
(-∞,-1)∪(2,+∞)
.分析:先对函数进行求导,根据函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,可以得到△>0,进而可解出a的范围.
解答:解:∵f(x)=x3+3ax2+3(a+2)x+1∴f'(x)=3x2+6ax+3(a+2)
∵函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值
∴△=(6a)2-4×3×3(a+2)>0
∴a>2或a<-1
故答案为:(-∞,-1)∪(2,+∞)
∵函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值
∴△=(6a)2-4×3×3(a+2)>0
∴a>2或a<-1
故答案为:(-∞,-1)∪(2,+∞)
点评:本题主要考查函数在某点取得极值的条件.属基础题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|