题目内容

已知函数f(x)=x2+ax+2b的一个零点在(0,1)内,另一个零点在(1,2)内,求:
(1)
b-2a-1
的值域;
(2)(a-1)2+(b-2)2的值域.
分析:由题意知
f(0)>0 
f(1)<0
f(2)>0
,化简得约束条件,再利用数形结合的方法求解.
(1)表达式
b-2
a-1
表示过(a,b)和(1,2)的直线的斜率;
(2)表达式(a-1)2+(b-2)2表示(a,b)和(1,2)距离的平方.
解答:解:由题意知
f(0)>0 
f(1)<0
f(2)>0
,则其约束条件为:
b>0 
1+a+2b<0
2+a+b>0

∴其可行域是由A(-3,1)、B(-2,0)、C(-1,0)构成的三角形.
∴(a,b)活动区域是三角形ABC中,
(1)令k=
b-2
a-1
,则表达式
b-2
a-1
表示过(a,b)和(1,2)的直线的斜率,
∴斜率kmax=
2-0
1+1
=1,kmin=
2-1
1+3
=
1
4

b-2
a-1
的值域为:(
1
4
,1);
(2)令p=(a-1)2+(b-2)2
则表达式(a-1)2+(b-2)2表示(a,b)和(1,2)距离的平方,
∴距离的平方pmax=(-3-1)2+(1-2)2=17,pmin=(
|1+4+1|
1+4
)2=
36
5

∴(a-1)2+(b-2)2的值域为:(
36
5
,17).
点评:本题考查的知识点是一元二次方程根的分布与系数的关系,其中根据方程的根与对应零点之间的关系,得到关于a,b的约束条件是解答本题的关键.如果从单纯的代数角度解决本题,难度很大,若能根据表达式的形式或代表的意义联想到其对应的几何图形,则解决问题就可以取得事半功倍的效果.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网