题目内容

2.若函数y=2sin2x+acosx+b的最大值是-$\frac{1}{2}$,最小值是-5,求a,b的值(其中a>0).

分析 令t=cosx∈[-1,1],则函数y=f(t)=-2${(t-\frac{a}{4})}^{2}$+b+2+$\frac{{a}^{2}}{8}$,它的最大值是-$\frac{1}{2}$,最小值是-5,$\frac{a}{4}$>0.根据它的最值、利用二次函数的性质、分类讨论求得a、b的值.

解答 解:根据函数y=2sin2x+acosx+b=2-2cos2x+acosx+b=-2${(cosx-\frac{a}{4})}^{2}$+b+2+$\frac{{a}^{2}}{8}$,
令t=cosx∈[-1,1],则函数y=f(t)=-2${(t-\frac{a}{4})}^{2}$+b+2+$\frac{{a}^{2}}{8}$,它的最大值是-$\frac{1}{2}$,最小值是-5.
由a>0,可得$\frac{a}{4}$>0.
①当$\frac{a}{4}$∈[0,1],即 a∈[0,4]时,在[-1,1]上,函数f(t)的最大值为f($\frac{a}{4}$)=b+2+$\frac{{a}^{2}}{8}$=-$\frac{1}{2}$,最小值f(1)=-2${(1-\frac{a}{4})}^{2}$+b+2+$\frac{{a}^{2}}{8}$=-5,
求得a=10,b=-$\frac{35}{4}$.
②当$\frac{a}{4}$>1,即 a>4时,y在[-1,1]上单调递增,故有最小值f(-1)=-2${(-1-\frac{a}{4})}^{2}$+b+2+$\frac{{a}^{2}}{8}$=-5,最大值f(1)=-2${(1-\frac{a}{4})}^{2}$+b+2+$\frac{{a}^{2}}{8}$=-$\frac{1}{2}$,
求得a=-$\frac{9}{4}$(不满足条件舍去).
综上可得,a=10,b=-$\frac{35}{4}$.

点评 本题主要考查余弦函数的值域,二次函数的性质,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网