题目内容
设等差数列{an}的前n项和为Sn,且a2=4,S5=30.数列{bn}满足b1=0,bn=2bn-1+1,(n∈N,n≥2),
①求数列{an}的通项公式;
②设Cn=bn+1,求证:{Cn}是等比数列,且{bn}的通项公式;
③设数列{dn}满足dn=
+bn,求{dn}的前n项和为Tn.
①求数列{an}的通项公式;
②设Cn=bn+1,求证:{Cn}是等比数列,且{bn}的通项公式;
③设数列{dn}满足dn=
| 4 |
| anan+1 |
①由a2=a1+d=4,S5=5a1+
d=30得:a1=2,d=2,
∴an=2+2(n-1)=2n…(4分)
②∵bn=2bn-1+1,cn=bn+1,
∴
=
=
=2(n≥2,n∈N)
∴{cn}是以2为公比的等比数列.
又∵c1=b1+1=1,
∴cn=bn+1=1×2n-1=2n-1,
∴bn=2n-1-1…(9分)
③∵dn=
+bn=
+2n-1-1=(
-
)+2n-1-1,
∴Tn=[(1-
)+(
-
)+…+(
-
)]+(1+2+22+…+2n-1)-n
=(1-
)+
-n
=2n-n-
(14分)
| 5×4 |
| 2 |
∴an=2+2(n-1)=2n…(4分)
②∵bn=2bn-1+1,cn=bn+1,
∴
| cn |
| cn-1 |
| bn+1 |
| bn-1+1 |
| 2(bn-1+1) |
| bn-1+1 |
∴{cn}是以2为公比的等比数列.
又∵c1=b1+1=1,
∴cn=bn+1=1×2n-1=2n-1,
∴bn=2n-1-1…(9分)
③∵dn=
| 4 |
| an•an+1 |
| 4 |
| 2n•2(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=(1-
| 1 |
| n+1 |
| 1-2n |
| 1-2 |
=2n-n-
| 1 |
| n+1 |
练习册系列答案
相关题目