题目内容
(2011•揭阳一模)已知x1=
,xn+1=
+xn-a.(n∈N*,a为常数)
(1)若a=
,求证:数列{lg(xn+
)}是等比数列;
(2)在(1)条件下,求证:xn≤(
)n-
,(n∈N*).
| 1 |
| 3 |
| x | 2 n |
(1)若a=
| 1 |
| 4 |
| 1 |
| 2 |
(2)在(1)条件下,求证:xn≤(
| 5 |
| 6 |
| 1 |
| 2 |
分析:(1)由xn+1=
+xn-
,知xn+1+
=xn2+xn+
=(xn+
)2,由x1=
,知xn+
>0,由此能够证明数列{lg(xn+
)}是等比数列.
(2)由(1)知lg(xn+
)=(lg
)•2n-1,即xn+
=(
)2n-1,由0<
<1,知要证(
)n-
≥xn,只需证2n≥2n,由此能够证明证:xn≤(
)n-
,(n∈N*).
| x | 2 n |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)知lg(xn+
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
| 5 |
| 6 |
| 5 |
| 6 |
| 5 |
| 6 |
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
解答:证明:(1)∵xn+1=
+xn-
,
∴xn+1+
=xn2+xn+
=(xn+
)2,(1分)
∵x1=
∴xn+
>0,则 lg(xn+1+
)=2lg(xn+
),(3分)
∴数列{lg(xn+
)}是以lg
为首项,以2为公比的等比数列,(4分)
(2)由(1)知lg(xn+
)=(lg
)•2n-1,化简得xn+
=(
)2n-1
∵0<
<1,∴要证(
)n-
≥xn,只需证2n≥2n,(8分)
证法一:当n=1或2时,有2n=n,
当n≥3时,2n=(1+1)n=1+
+
+…+
≥1+n+
≥1+2n>2n,(10分)
∴2n≥2n对n∈N*都成立,n=1
∴xn≤(
)n-
,,(n∈N*).(12分)
证法二:用数学归纳法证明,
①当时,结论显然成立;n=k+1,(9分)
②假设当n=k(k≥1)时结论成立,即2k≥2k,
当n=k+1时,2^k+{x_{n+1}}=x_n^2+{x_n}={x_n}({x_n}+1)1=2•2k≥2•2k>2(k+1),
=
=
-
=
-
,(10分)
∴当时结论也成立
综合①、②知xn≤(
)n-
,对n∈N*都成立.(12分)
| x | 2 n |
| 1 |
| 4 |
∴xn+1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
∵x1=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{lg(xn+
| 1 |
| 2 |
| 5 |
| 6 |
(2)由(1)知lg(xn+
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
| 5 |
| 6 |
∵0<
| 5 |
| 6 |
| 5 |
| 6 |
| 1 |
| 2 |
证法一:当n=1或2时,有2n=n,
当n≥3时,2n=(1+1)n=1+
| C | 1 n |
| C | 2 n |
| C | n n |
≥1+n+
| n(n-1) |
| 2 |
∴2n≥2n对n∈N*都成立,n=1
∴xn≤(
| 5 |
| 6 |
| 1 |
| 2 |
证法二:用数学归纳法证明,
①当时,结论显然成立;n=k+1,(9分)
②假设当n=k(k≥1)时结论成立,即2k≥2k,
当n=k+1时,2^k+{x_{n+1}}=x_n^2+{x_n}={x_n}({x_n}+1)1=2•2k≥2•2k>2(k+1),
| 1 |
| xn+1 |
| 1 |
| xn(xn+1) |
| 1 |
| xn |
| 1 |
| xn+1 |
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| xn+1 |
∴当时结论也成立
综合①、②知xn≤(
| 5 |
| 6 |
| 1 |
| 2 |
点评:本题考查等比数列的证明,考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目