题目内容

已知f(n)=1+3+5+…+(2n-5),且n是大于2的整数,则f(8)的值为
 
分析:根据n为大于2的整数,把n=8代入f(n)中表示出f(8),由六个数字成等差数列,利用等差数列的求和公式求出这六个数的和即为f(8)的值.
解答:解:根据题意可知:当n=8时,f(8)=1+3+5+7+9+11,
∵1+3+5+7+9+11=
6(1+11)
2

∴f(8)=36.
故答案为:36.
点评:此题考查了等差数列的前n项和公式,找出f(n)的规律,令n=8表示出f(8)是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网