题目内容
函数f(x)=sin(2x+
)cos(2x-
)的最小正周期为
.
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
函数f(x)=sin(2x+
)cos(2x-
)
=sin[
+(2x-
)]cos(2x-
)
=-cos2(2x-
)
=-
=-
-
cos(4x-
π),
∵ω=4,
∴T=
=
,即函数的最小正周期为
.
故答案为:
| π |
| 6 |
| π |
| 3 |
=sin[
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
=-cos2(2x-
| π |
| 3 |
=-
1+cos(4x-
| ||
| 2 |
=-
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
∵ω=4,
∴T=
| 2π |
| 4 |
| π |
| 2 |
| π |
| 2 |
故答案为:
| π |
| 2 |
练习册系列答案
相关题目