题目内容
已知函数f(x)=sin(wx+
)(w>0),其图象上相邻的两个最低点间的距离为2π.
(1)求ω的值及f(x)
(2)若a∈(-
,
),f(a+
)=
,求sin(2a+
)的值.
| π |
| 2 |
(1)求ω的值及f(x)
(2)若a∈(-
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 1 |
| 3 |
| 2π |
| 3 |
分析:(1)由函数图象上相邻的两个最低点间的距离为2π,可得其周期为2π,进而可求w,可得解析式;
(2)由题意可得cos(a+
)=
,通过三角函数公式可求其正弦值,而sin(2a+
)=2sin(α+
)cos(α+
),代值可求.
(2)由题意可得cos(a+
| π |
| 3 |
| 1 |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:解:(1)因为函数f(x)=sin(wx+
)(w>0),图象上相邻的两个最低点间的距离为2π.
所以函数的周期为2π,由T=
=2π,可得w=1,
故f(x)=sin(x+
)=cosx
(2)由(1)可知f(x)=cosx,可得cos(a+
)=
,又a∈(-
,
),所以α+
∈(0,
)
所以sin(α+
)=
=
,
所以sin(2α+
)=2sin(α+
)cos(α+
)=2×
×
=
| π |
| 2 |
所以函数的周期为2π,由T=
| 2π |
| w |
故f(x)=sin(x+
| π |
| 2 |
(2)由(1)可知f(x)=cosx,可得cos(a+
| π |
| 3 |
| 1 |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
所以sin(α+
| π |
| 3 |
1-cos2(α+
|
2
| ||
| 3 |
所以sin(2α+
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
2
| ||
| 3 |
| 1 |
| 3 |
4
| ||
| 9 |
点评:本题为三角函数的基本运算,把图象问题转化为式子的运算和交点整体运用是解决问题的关键,属中档题.
练习册系列答案
相关题目