题目内容
(2010•永州一模)若点P是△ABC的外心,且
+
+λ
=0,∠C=120°,则实数λ的值为
| PA |
| PB |
| PC |
-1
-1
.分析:如图所示,利用点P是△ABC的外心,∠C=120°,可得|
|=|
|=|
|=R,∠APB=120°.由于
+
+λ
=
,可得
+
=-λ
.
两边做数量积可得(
+
)2=λ2
2,展开相比较即可得出λ.
| PA |
| PB |
| PC |
| PA |
| PB |
| PC |
| 0 |
| PA |
| PB |
| PC |
两边做数量积可得(
| PA |
| PB |
| PC |
解答:解:如图所示,∵
+
+λ
=
,∴
+
=-λ
.
∴(
+
)2=λ2
2,展开为
2+
2+2|
| |
|cos∠APB=λ2|
|2.
∵点P是△ABC的外心,∠C=120°,∴|
|=|
|=|
|=R,∠APB=120°.
∴2R2-R2=λ2R2,化为λ2=1.
∵
+
+λ
=
,∴λ=-1.
故答案为-1.
| PA |
| PB |
| PC |
| 0 |
| PA |
| PB |
| PC |
∴(
| PA |
| PB |
| PC |
| PA |
| PB |
| PA |
| PB |
| PC |
∵点P是△ABC的外心,∠C=120°,∴|
| PA |
| PB |
| PC |
∴2R2-R2=λ2R2,化为λ2=1.
∵
| PA |
| PB |
| PC |
| 0 |
故答案为-1.
点评:本题考查了向量的运算和三角形外心的性质等基础知识与基本方法,属于基础题.
练习册系列答案
相关题目