ÌâÄ¿ÄÚÈÝ
ÎÒÃǰÑͬʱÂú×ãÏÂÁÐÁ½¸öÐÔÖʵĺ¯Êý³ÆÎª¡°ºÍгº¯Êý¡±£º
¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
£¨1£©ÒÑÖªÃݺ¯Êýf£¨x£©µÄͼÏó¾¹ýµã£¨2£¬2£©£¬ÅжÏg£¨x£©=f£¨x£©+2£¨x¡ÊR£©ÊÇ·ñÊǺÍгº¯Êý£¿
£¨2£©ÅжϺ¯Êýh(x)=
ÊÇ·ñÊǺÍгº¯Êý£¿
£¨3£©Èôº¯Êý¦Õ(x)=
+t(1¡Üx¡Ü
)ÊǺÍгº¯Êý£¬ÇóʵÊýtµÄȡֵ·¶Î§£®
¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
£¨1£©ÒÑÖªÃݺ¯Êýf£¨x£©µÄͼÏó¾¹ýµã£¨2£¬2£©£¬ÅжÏg£¨x£©=f£¨x£©+2£¨x¡ÊR£©ÊÇ·ñÊǺÍгº¯Êý£¿
£¨2£©ÅжϺ¯Êýh(x)=
|
£¨3£©Èôº¯Êý¦Õ(x)=
| x2-1 |
| ||
| 2 |
·ÖÎö£º£¨1£©ÀûÓÃÃݺ¯Êýf£¨x£©µÄͼÏó¾¹ýµã£¨2£¬2£©£¬Çó³öº¯ÊýµÄ±í´ïʽ£¬È»ºóÅжÏg£¨x£©=f£¨x£©+2£¨x¡ÊR£©ÊÇ·ñÊǺÍгº¯Êý£®
£¨2£©Ö±½ÓÀûÓÃж¨Ò壬ÅжϺ¯Êýh(x)=
ÊÇ·ñÂú×ãºÍгº¯ÊýµÄ¶¨Ò壬¼´¿ÉÍÆ³ö½á¹û£»
£¨3£©ÀûÓÃж¨Ò壬º¯Êý¦Õ(x)=
+t(1¡Üx¡Ü
)ÊǺÍгº¯Êý£¬ÍƳö¹ØÏµÊ½¼´¿ÉÇóʵÊýtµÄȡֵ·¶Î§£®
£¨2£©Ö±½ÓÀûÓÃж¨Ò壬ÅжϺ¯Êýh(x)=
|
£¨3£©ÀûÓÃж¨Ò壬º¯Êý¦Õ(x)=
| x2-1 |
| ||
| 2 |
½â´ð£º½â£º£¨1£©Éèf£¨x£©=x¦Á£¨¦Á¡ÊR£©£¬ÓÉf£¨2£©=2¦Á=2£¬µÃ¦Á=1£¬f£¨x£©=x£¬g£¨x£©=x+2ÔÚRÉÏÊÇÔöº¯Êý£¬
Áî
(p£¼q)£¬µÃp=-1£¬q=2
¹Êg£¨x£©=f£¨x£©+2ÊǺÍгº¯Êý£® ¡£¨4·Ö£©
£¨2£©Ò×µÃh£¨x£©ÎªRÉϵļõº¯Êý£¬
¢ÙÈôp£¼q£¼1Ôò
£¬Ïà¼õµÃp+q=2Óëp£¼q£¼1ì¶Ü£»
¢ÚÈô1¡Üp£¼qÔò
£¬p2+q2=1Óë1¡Üp£¼qì¶Ü£»
¢ÛÈôp£¼1¡ÜqÔò
£¬p=1Óëp£¼1ì¶Ü£®
¹Êh£¨x£©²»ÊǺÍгº¯Êý£® ¡£¨8·Ö£©
£¨3£©¦Õ(x)=
+tÔÚ[1£¬
]ÉÏÊÇÔöº¯Êý£¬
Óɺ¯Êý¦Õ(x)=
+t(1¡Üx¡Ü
)ÊǺÍгº¯ÊýÖª£¬
º¯Êý¦Õ£¨x£©ÔÚ[1£¬
]ÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
¡à
¡àp2£¬q2(1¡Üp2£¼q2¡Ü
)ÊÇ·½³Ì
+t=mÔÚÇø¼ä[1£¬
]ÄÚµÄÁ½¸ö²»µÈʵ¸ù
?x2-x+1-t=0ÔÚÇø¼ä[0£¬
]ÄÚµÄÁ½¸ö²»µÈʵ¸ù£¬
(Áî
=x)?
?t¡Ê(
£¬
]¡£¨12·Ö£©
Áî
|
¹Êg£¨x£©=f£¨x£©+2ÊǺÍгº¯Êý£® ¡£¨4·Ö£©
£¨2£©Ò×µÃh£¨x£©ÎªRÉϵļõº¯Êý£¬
¢ÙÈôp£¼q£¼1Ôò
|
¢ÚÈô1¡Üp£¼qÔò
|
¢ÛÈôp£¼1¡ÜqÔò
|
¹Êh£¨x£©²»ÊǺÍгº¯Êý£® ¡£¨8·Ö£©
£¨3£©¦Õ(x)=
| x2-1 |
| ||
| 2 |
Óɺ¯Êý¦Õ(x)=
| x2-1 |
| ||
| 2 |
º¯Êý¦Õ£¨x£©ÔÚ[1£¬
| ||
| 2 |
¡à
|
¡àp2£¬q2(1¡Üp2£¼q2¡Ü
| 3 |
| 2 |
| m-1 |
| 3 |
| 2 |
?x2-x+1-t=0ÔÚÇø¼ä[0£¬
| ||
| 2 |
(Áî
| m-1 |
|
| 3 |
| 4 |
3-
| ||
| 2 |
µãÆÀ£º±¾Ì⿼²éж¨ÒåµÄÀí½âÒÔ¼°Ó¦Ó㬿¼²éº¯ÊýÓë·½³ÌµÄ¹ØÏµ£¬º¯ÊýµÄµ¥µ÷ÐÔÓ뺯ÊýµÄ¶¨ÒåÓòÓ뺯ÊýµÄÖµÓòµÄ×ÛºÏÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿