题目内容
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
(1)
(2) 随机变量ξ的分布列是
ξ | 0 | 1 |
|
P(ξ) |
|
|
|
![]()
【解析】
解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C32对相交棱,因此P(ξ=0)=
=
=
.
(2)若两条棱平行,则它们的距离为1或
,其中距离为
的共有6对,故P(ξ=
)=
=
,
于是P(ξ=1)=1-P(ξ=0)-P(ξ=
)=1-
-
=
,
所以随机变量ξ的分布列是
ξ | 0 | 1 |
|
P(ξ) |
|
|
|
因此E(ξ)=1×
+
×
=
.
练习册系列答案
相关题目