题目内容

 (12分)如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的余弦值.

解:(Ⅰ)证明:因为侧面均为正方形,

所以,

所以平面,三棱柱是直三棱柱.    ………………1分

因为平面,所以,          ………………2分

又因为中点,

所以.              ……………3分

因为,

所以平面.       ……………4分

(Ⅱ)证明:连结,交于点,连结

因为为正方形,所以中点,

中点,所以中位线,

所以,            ………………6分

因为平面平面

所以平面.       ………………8分

 (Ⅲ)解: 因为侧面均为正方形,

所以两两互相垂直,如图所示建立直角坐标系.

,则.

                          

设平面的法向量为,则有

,得.                                 

又因为平面,所以平面的法向量为

, 因为二面角是钝角,所以,二面角的余弦值为.    -----------12分        

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网