题目内容

已知四棱锥PABCD的底面为直角梯形,ABDC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,PM=kPB.

(1)若k=时,试判断PD与平面AMC的位置关系,并给予证明;

(2)k为何值时,二面角A-MC-B大小为?

解:(1)PD∥平面AMC.?

AD,AB,APx,y,z轴建立如图坐标系,则P(0,0,1),C(1,1,0),B(0,2,0),D(1,0,0),M(0, ,).                                                                                                                   ?

=(-1,0,1),=(0,,),=(-1,-,).                                          ?

=λ+μ,?

?

λ=,μ=1.                                                                                                     ?

=+,∴DP∥平面AMC.                                                                   ?

(2)设平面AMC的法向量n1=(a,b,1),平面MCB的法向量为n2=(c,d,1).?

M(0,2k,1-k),=(1,1,0),=(0,2k,1-k),=(1,-1,0),=(0,2,-1).?

n1=(,,1).                                                                                     ?

n2=(,,1).                              ?

若二面角AMCB的大小为,?

则cos〈n1,n2〉==,?

∴(+1)×=2.?

=.?

k2-6k+3=0.?

k=3±(∵0≤k≤1,∴3+6舍去).?

k=3-,?

即当k=3-时,二面角AMCB的大小为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网