题目内容
[x]为x的整数部分.当n≥2时,则[
+
+
+…+
]的值为( )
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
分析:由
+
+
+…+
≤1+
+
+…+
,
+
+
+…+
≥
+
+
+…+
,利用裂项求和法能求出当n≥2时,[
+
+
+…+
]的值.
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
解答:解:∵
+
+
+…+
≤1+
+
+…+
=1+(1-
+
-
+…+
-
)
=1+(1-
)=2-
.
+
+
+…+
≥
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
.
∴当n≥2时,则[
+
+
+…+
]=1.
故选B.
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=1+(1-
| 1 |
| n |
| 1 |
| n |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
∴当n≥2时,则[
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
故选B.
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意放缩法和裂项求和法的合理运用.
练习册系列答案
相关题目