题目内容
| AB |
| a |
| BC |
| b |
| a |
| b |
| AG |
| GB |
分析:由题意可得点G为△ABC的重心,再根据两个向量的加减法及其几何意义可得
=
=
•(
+
),化简可得结果;
=
+
=
+
,化简可得结果.
| AG |
| 2 |
| 3 |
| AD |
| 2 |
| 3 |
| a |
| 1 |
| 2 |
| b |
| GB |
| GD |
| DB |
| 1 |
| 3 |
| AD |
| 1 |
| 2 |
| CB |
解答:解:在△ABC中,
=
,
=
,AD为BC上的中线,G在中线AD上,且AG=2GD,故点G为△ABC的重心.
故有
=
=
•(
+
)=
+
.
=
+
=
+
=
•(
+
)-
=
-
.
| AB |
| a |
| BC |
| b |
故有
| AG |
| 2 |
| 3 |
| AD |
| 2 |
| 3 |
| a |
| 1 |
| 2 |
| b |
2
| ||
| 3 |
| ||
| 3 |
| GB |
| GD |
| DB |
| 1 |
| 3 |
| AD |
| 1 |
| 2 |
| CB |
| 1 |
| 3 |
| a |
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| b |
| ||
| 3 |
| ||
| 3 |
点评:本题主要考查平面向量基本定理的应用,两个向量的加减法及其几何意义,属于中档题.
练习册系列答案
相关题目
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|