题目内容
(2012•邯郸模拟)已知数列{an}满足a1=1,a2=2对于任意的正整数n都有an•an+1≠1,anan+1an+2=an+an+1+an+2,则S100=
199
199
.分析:再写一式,两式相减可推断出an+3=an,进而可知数列{an}是以3为周期的数列,通过a1=1,a2=2,求得a3,而100=3×33+1,故可知S100的答案.
解答:解:依题意可知,anan+1an+2=an+an+1+an+2,an-1anan+1=an-1+an+an+1,
两式相减得anan+1(an+2-an-1)=an+2-an-1,
∵an•an+1≠1,
∴an+2-an-1=0,即an+3=an,
∴数列{an}是以3为周期的数列,
∵a1a2a3=a1+a2+a3,a1=1,a2=2,∴a3=3
∴S100=33×(1+2+3)+1=199
故答案为:199.
两式相减得anan+1(an+2-an-1)=an+2-an-1,
∵an•an+1≠1,
∴an+2-an-1=0,即an+3=an,
∴数列{an}是以3为周期的数列,
∵a1a2a3=a1+a2+a3,a1=1,a2=2,∴a3=3
∴S100=33×(1+2+3)+1=199
故答案为:199.
点评:本题主要考查了数列的递推式和数列的求和问题,解题的关键是找出数列的周期性.
练习册系列答案
相关题目