题目内容
在数列{an}中,已知,a1=2,an+1+an+1an=2 an.对于任意正整数n,(Ⅰ)求数列{an}的通项an的表达式;
(Ⅱ)若
| n | i=1 |
分析:(Ⅰ)由题意,对于n∈N*,an≠0,且
=
+
,即
-1=
(
-1).由a1=2,得
-1=-
.则数列{
-1}是首项为-
,公比为
的等比数列.由此可求出通项an的表达式.
(Ⅱ)ai(ai-1)=
,i=1,2,…,n.
当i≥2,
ai(ai-1)=a1(a1-1)+a2(a2-1)++an(an-1)
=
+
++
<
+(
-
)+(
-
)++(
-
)
=3-
<3.由此能求出M的最小值.
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)ai(ai-1)=
| 2i |
| (2i-1)2 |
当i≥2,
| n |
| i=1 |
=
| 21 |
| (21-1)2 |
| 22 |
| (22-1)2 |
| 2n |
| (2n-1)2 |
| 21 |
| (21-1)2 |
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
=3-
| 1 |
| 2n-1 |
解答:解:(Ⅰ)由题意,对于n∈N*,an≠0,且
=
+
,即
-1=
(
-1).
由a1=2,得
-1=-
.则数列{
-1}是首项为-
,公比为
的等比数列.于是
-1=-
×(
)n-1=-(
)n,即an=
.(6分)
(Ⅱ)由(Ⅰ),得ai(ai-1)=
,i=1,2,…,n.当i≥2时,因为ai(ai-1)=
<
=
=
-
,
所以
ai(ai-1)=a1(a1-1)+a2(a2-1)++an(an-1)
=
+
++
<
+(
-
)+(
-
)++(
-
)
=3-
<3.
又
ai(ai-1)=a1(a1-1)+a2(a2-1)++an(an-1)
=
+
++
>
=2,
故M的最小值为3.(14分)
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
由a1=2,得
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2n |
| 2n-1 |
(Ⅱ)由(Ⅰ),得ai(ai-1)=
| 2i |
| (2i-1)2 |
| 2i |
| (2i-1)2 |
| 2i |
| (2i-1)(2i-2) |
| 2i-1 |
| (2i-1)(2i-1-1) |
| 1 |
| 2i-1-1 |
| 1 |
| 2i-1 |
所以
| n |
| i=1 |
=
| 21 |
| (21-1)2 |
| 22 |
| (22-1)2 |
| 2n |
| (2n-1)2 |
| 21 |
| (21-1)2 |
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
=3-
| 1 |
| 2n-1 |
又
| n |
| i=1 |
=
| 21 |
| (21-1)2 |
| 22 |
| (22-1)2 |
| 2n |
| (2n-1)2 |
>
| 21 |
| (21-1)2 |
故M的最小值为3.(14分)
点评:本题考查数列的合理运用,解题时要认真审题.注意公式的灵活运用.
练习册系列答案
相关题目