题目内容

已知向量数学公式=(sinx,数学公式cosx),数学公式=(cosx,cosx),定义函数f(x)=数学公式
(1)求f(x)的最小正周期T;
(2)若△ABC的三边长a,b,c成等比数列,且c2+ac-a2=bc,求边a所对角A以及f(A)
的大小.

解:(1)f(x)==(sinx,cosx)•(cosx,cosx)=sinxcosx+cos2x
=sin2x+=sin2x+cos2x+
=sin(2x+)+
∴f(x)的最小正周期为T==π.
(2)∵a、b、c成等比数列,∴b2=ac,
又c2+ac-a2=bc.
∴cosA====
又∵0<A<π,∴A=
f(A)=sin(2×+)+=sinπ+=
分析:(1)先利用两角和公式对函数解析式化简整理求得f(x)=sin(2x+)+.进而利用三角函数的周期公式求得函数的最小正周期.
(2)根据A的范围确定2x+的范围,进而根据正弦函数的单调性求得函数的最大和最小值,答案可得.
点评:此题是个中档题.主要考查了三角函数的周期性及其求法,两角和公式的化简求值.考查了学生综合运用所学知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网