题目内容
(2013•浙江二模)数列{an}满足a1=1,an+1=an+n+1(n∈N*),则
+
+…+
等于( )
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2013 |
分析:由所给的式子得an+1-an=n+1,给n具体值列出n-1个式子,再他们加起来,求出an,再用裂项法求出
,然后代入
+
+…+
进行求值,
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2013 |
解答:解:由an+1=an+n+1得,an+1-an=n+1,
则a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1,
…
an-an-1=(n-1)+1,
以上等式相加,得an-a1=1+2+3+…+(n-1)+n-1,
把a1=1代入上式得,an=1+2+3+…+(n-1)+n=
,
∴
=
=2(
-
),
∴
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]
=2(1-
)=
,
故选C.
则a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1,
…
an-an-1=(n-1)+1,
以上等式相加,得an-a1=1+2+3+…+(n-1)+n-1,
把a1=1代入上式得,an=1+2+3+…+(n-1)+n=
| n(1+n) |
| 2 |
∴
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2013 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=2(1-
| 1 |
| 2014 |
| 2013 |
| 1007 |
故选C.
点评:本题考查了累加法求数列的通项公式,以及裂项相消法求数列的前n项和,这是数列常考的方法,需要熟练掌握.
练习册系列答案
相关题目