题目内容
在数列{an}中,已知a1=
,a2=
,当n≥2且n∈N*时,有an+1=
an-
an-1.
(1)若bn=an+1-an(n∈N*),求证:数列{bn}是等比数列;
(2)求证:对任意n∈N*,都有
≤an<
.
| 4 |
| 3 |
| 13 |
| 9 |
| 4 |
| 3 |
| 1 |
| 3 |
(1)若bn=an+1-an(n∈N*),求证:数列{bn}是等比数列;
(2)求证:对任意n∈N*,都有
| 4 |
| 3 |
| 3 |
| 2 |
分析:(1)根据题意在数列{an}中,已知a1=
,a2=
,根据等比数列的性质,证明
等于一个常数即可;
(2)数列{bn}是等比数列,an+1-an=(
)n+1,可得对an进行拆分,可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,然后进行求和,再进行证明;
| 4 |
| 3 |
| 13 |
| 9 |
| bn |
| bn-1 |
(2)数列{bn}是等比数列,an+1-an=(
| 1 |
| 3 |
解答:解:(1)当n=1时,有b1=a2-a1=
-
=
…(1分)
当n≥2时,有
=
=
=
故数列{bn}是等比数列,其首项为b1=
,公比为q=
…(5分)
(2)由(1)知bn=
×(
)n-1=(
)n+1即an+1-an=(
)n+1…(6分)
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(
)n+(
)n-1+…+(
)2+
=
=
[1-(
)n+1]…(10分)
当n∈N*时,有0<(
)n+1≤
,故
≤1-(
)n+1<1,
故
≤
[1-(
)n+1]<
,即
≤an<
…(13分)
| 13 |
| 9 |
| 4 |
| 3 |
| 1 |
| 9 |
当n≥2时,有
| bn |
| bn-1 |
| an+1-an |
| an-an-1 |
| ||||
| an-an-1 |
| 1 |
| 3 |
故数列{bn}是等比数列,其首项为b1=
| 1 |
| 9 |
| 1 |
| 3 |
(2)由(1)知bn=
| 1 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
1-(
| ||
1-
|
| 3 |
| 2 |
| 1 |
| 3 |
当n∈N*时,有0<(
| 1 |
| 3 |
| 1 |
| 9 |
| 8 |
| 9 |
| 1 |
| 3 |
故
| 4 |
| 3 |
| 3 |
| 2 |
| 1 |
| 3 |
| 3 |
| 2 |
| 4 |
| 3 |
| 3 |
| 2 |
点评:此题主要考查等比数列的性质,是一道中档题,第二问对an进行拆分求和,考查的知识点比较全面;
练习册系列答案
相关题目