题目内容
13.在直角坐标系中,点A(a,0),B(2,4),其中a≠0,已知$\overrightarrow{OA}$⊥(2$\overrightarrow{OB}$+$\overrightarrow{AB}$),求a的值.分析 求出各向量的坐标,根据向量垂直得出数量级为0,列方程解出a.
解答 解:$\overrightarrow{OA}$=(a,0),$\overrightarrow{OB}$=(2,4),$\overrightarrow{AB}$=(2-a,4).
∴2$\overrightarrow{OB}+\overrightarrow{AB}$=(6-a,12),
∵$\overrightarrow{OA}$⊥(2$\overrightarrow{OB}$+$\overrightarrow{AB}$),
∴$\overrightarrow{OA}$•(2$\overrightarrow{OB}$+$\overrightarrow{AB}$)=a(6-a)=0,
∵a≠0,
∴a=6.
点评 本题考查了平面向量的坐标运算,向量的数量级运算,向量垂直与数量级的关系,属于基础题.
练习册系列答案
相关题目
5.已知α∈($\frac{π}{2}$,π),sin(π-α)=$\frac{3}{5}$,则cosα等于( )
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
2.实数x,y满足条件$\left\{\begin{array}{l}{3x-6y-2≤0}\\{|x|+|y|≤1}\end{array}\right.$,则z=2x-y的取值范围是( )
| A. | [-2,$\frac{5}{3}$] | B. | [-$\frac{1}{3}$,2] | C. | [-$\frac{1}{3}$,$\frac{5}{3}$] | D. | [-2,2] |
5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$与函数y=$\sqrt{x}$的图象交于点P,若函数y=$\sqrt{x}$的图象在点P处的切线过双曲线左焦点F(-2,0),则双曲线的离心率是( )
| A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\frac{3}{2}$ |