题目内容
定义运算A.奇函数,值域(0,1]
B.偶函数,值域(0,1]
C.非奇非偶函数,值域(0,1]
D.偶函数,值域(0,+∞)
【答案】分析:根据题意求出f(x)=2x*2-x的解析式,即可得到答案.
解答:解:依题意得,f(x)=2x*2-x=
,显然f(0)=1,
∵f(-x)=2-x*2x=
=f(x),
∴f(x)为普函数,可排除A,C;
又当x≤0时,0<f(x)=2x≤1,
当x>0时,0<f(x)=2-x≤1,
故f(x)的值域为(0,1],
故选B.
点评:本题考查函数奇偶性的判断,考查函数的值域的求法,得到f(x)=2x*2-x的解析式是关键,属于中档题.
解答:解:依题意得,f(x)=2x*2-x=
∵f(-x)=2-x*2x=
∴f(x)为普函数,可排除A,C;
又当x≤0时,0<f(x)=2x≤1,
当x>0时,0<f(x)=2-x≤1,
故f(x)的值域为(0,1],
故选B.
点评:本题考查函数奇偶性的判断,考查函数的值域的求法,得到f(x)=2x*2-x的解析式是关键,属于中档题.
练习册系列答案
相关题目
定义运算:a*b=
,如1*2=1,则f(x)=2x*2-x( )
|
| A、有最大值1且没有最小值 |
| B、有最小值1且没有最大值 |
| C、没有最大值也没有最小值 |
| D、不能确定是否有最值 |