题目内容

已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是( )
A.6
B.8
C.
D.3
【答案】分析:三视图复原的几何体是四棱锥,利用三视图的数据直接求解四棱锥P-ABCD的四个侧面中面积,得到最大值即可.
解答:解:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,
后面是等腰三角形,腰为3,所以后面的三角形的高为:=
所以后面三角形的面积为:=2
两个侧面面积为:=3,前面三角形的面积为:=6,
四棱锥P-ABCD的四个侧面中面积最大的是前面三角形的面积:6.
故选A.
点评:本题考查三视图与几何体的关系,几何体的侧面积的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网