ÌâÄ¿ÄÚÈÝ

17£®ÔÚ¡÷ABCÖУ¬DΪBC±ßÉϵĵ㣬BD=$\frac{1}{3}$BC£¬¡ÏADC=60¡ã£¬ÇÒ$\overrightarrow{BA}•\overrightarrow{BC}$+2S¡÷ABC=$\sqrt{2}$|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|£®
£¨1£©Çó½ÇB£»
£¨2£©Èô|AC|=$\sqrt{6}$£¬ÇóS¡÷ABC£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÁ½½ÇºÍµÄÕýÏÒ¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½½ÇB£»
£¨2£©ÉèAD=x£¬BD=$\frac{1}{3}$a£¬CD=$\frac{2}{3}$a£¬ÔÚ¡÷ACDÖУ¬ÓÉÓàÏÒ¶¨Àí£¬ÔÚ¡÷ABDÖУ¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃa=3£¬ÔÙÓÉÓàÏÒ¶¨Àí¿ÉµÃcosC£¬½ø¶øµÃµ½sinC£¬ÔÙÓÉÃæ»ý¹«Ê½¼ÆËã¼´¿ÉµÃµ½£®

½â´ð ½â£º£¨1£©Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®
$\overrightarrow{BA}$•$\overrightarrow{BC}$+2S¡÷ABC=$\sqrt{2}$|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|£¬
¿ÉµÃcacosB+acsinB=$\sqrt{2}$ca£¬
¼´ÓÐsinB+cosB=$\sqrt{2}$£¬
¼´$\sqrt{2}$sin£¨B+45¡ã£©=$\sqrt{2}$£¬
ÓÉBΪÈý½ÇÐεÄÄڽǣ¬¼´ÓÐB+45¡ã=90¡ã£¬
½âµÃB=45¡ã£»
£¨2£©ÉèAD=x£¬BD=$\frac{1}{3}$a£¬CD=$\frac{2}{3}$a£¬
ÔÚ¡÷ACDÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£¬
AC2=AD2+CD2-2AD•CD•cos60¡ã£¬
¼´Îª6=x2+$\frac{4}{9}$a2-$\frac{2}{3}$ax£¬
ÔÚ¡÷ABDÖУ¬B=45¡ã£¬¡ÏBAD=15¡ã£¬
ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£¬$\frac{x}{sin45¡ã}$=$\frac{\frac{1}{3}a}{sin15¡ã}$£¬
¼´ÓÐx=$\frac{\sqrt{3}+1}{3}$a£¬
½âµÃa=3£¬x=$\sqrt{3}$+1£¬
ÔÚ¡÷ACDÖУ¬CD=2£¬AD=$\sqrt{3}+1$£¬AC=$\sqrt{6}$£¬
¼´ÓÐcosC=$\frac{6+4-£¨4+2\sqrt{3}£©}{2¡Á2\sqrt{6}}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$£®
¼´ÓÐsinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$£¬
ÔòS¡÷ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$¡Á3¡Á$\sqrt{6}$¡Á$\frac{\sqrt{6}+\sqrt{2}}{4}$
=$\frac{9+3\sqrt{3}}{4}$£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÕýÏÒ¡¢ÓàÏÒ¶¨ÀíºÍÃæ»ý¹«Ê½µÄÔËÓã¬Í¬Ê±¿¼²éÁ½½ÇºÍµÄÕýÏÒ¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø