题目内容
数列{an}满足an=2an-1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;
(2)是否存在一个实数t,使得bn=
| 1 | 2n |
(3)求数列{an}的前n项和Sn.
分析:(Ⅰ)利用an=2an-1+2n+1(n∈N,n≥2),a3=27,代入可求;(Ⅱ)假设存在实数t,使得{bn}为等差数列,从而有2bn=bn-1+bn+1,.故可求;(Ⅲ)先求出数列的通项a n=(n+
)•2n-1=(2n+1)•2n-1-1,再求和.
| 1 |
| 2 |
解答:解:(Ⅰ)由a3=27,27=2a2+23+1----------(1分)∴a2=9----------(2分)
∴9=2a1+22+1∴a1=2------------(3分)
(Ⅱ)假设存在实数t,使得{bn}为等差数列.
则2bn=bn-1+bn+1------------(4分)∴2×
(a n+t)=
(a n-1+t)+
(a n+1+t)
∴4an=4an-1+an+1+t------------(5分)∴4a n=4×
+2a n+2n+1+t+1∴t=1------------(6分)
存在t=1,使得数列{bn}为等差数列.------------(7分)
(Ⅲ)由(1)、(2)知:b 1=
,b 2=
------------(8分)
又{bn}为等差数列.b n=n+
∴a n=(n+
)•2n-1=(2n+1)•2n-1-1------------(9分)
∴Sn=3×20-1+5×21-1+7×22-1+…+(2n+1)×2n-1-1=3+5×2+7×22+…+(2n+1)×2n-1-n
∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n∴-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n----------(11分)=1+2×
-(2n+1)×2n+n
=(1-2n)×2n+n-1Sn=(2n-1)×2n-n+1------------(13分)
∴9=2a1+22+1∴a1=2------------(3分)
(Ⅱ)假设存在实数t,使得{bn}为等差数列.
则2bn=bn-1+bn+1------------(4分)∴2×
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴4an=4an-1+an+1+t------------(5分)∴4a n=4×
| a n-2n-1 |
| 2 |
存在t=1,使得数列{bn}为等差数列.------------(7分)
(Ⅲ)由(1)、(2)知:b 1=
| 3 |
| 2 |
| 5 |
| 2 |
又{bn}为等差数列.b n=n+
| 1 |
| 2 |
| 1 |
| 2 |
∴Sn=3×20-1+5×21-1+7×22-1+…+(2n+1)×2n-1-1=3+5×2+7×22+…+(2n+1)×2n-1-n
∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n∴-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n----------(11分)=1+2×
| 1-2n |
| 1-2 |
=(1-2n)×2n+n-1Sn=(2n-1)×2n-n+1------------(13分)
点评:本题考查数列的通项公式的求法,存在性问题的求解,同时考查错位相减法求和.
练习册系列答案
相关题目