ÌâÄ¿ÄÚÈÝ
£¨2012•½ËÕ¶þÄ££©ÒÑÖª¸÷Ïî¾ùΪÕýÕûÊýµÄÊýÁÐ{an}Âú×ãan£¼an+1£¬ÇÒ´æÔÚÕýÕûÊýk£¨k£¾1£©£¬Ê¹µÃa1+a2+¡+ak=a1•a2¡ak£¬an+k=k+an£¨n¡ÊN*£©£®
£¨1£©µ±k=3£¬a1a2a3=6ʱ£¬ÇóÊýÁÐ{an}µÄǰ36ÏîµÄºÍS36£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨3£©ÈôÊýÁÐ{bn}Âú×ãbnbn+1=-21•(
)an-8£¬ÇÒb1=192£¬ÆäǰnÏî»ýΪTn£¬ÊÔÎÊnΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£¿
£¨1£©µ±k=3£¬a1a2a3=6ʱ£¬ÇóÊýÁÐ{an}µÄǰ36ÏîµÄºÍS36£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨3£©ÈôÊýÁÐ{bn}Âú×ãbnbn+1=-21•(
| 1 | 2 |
·ÖÎö£º£¨1£©Éècn=a3n-2+a3n-1+a3n£¬ÓÉan+3=3+an£¬µÃcn+1=cn+9£¬ËùÒÔÊýÁÐ{cn}Êǹ«²îΪ9µÄµÈ²îÊýÁУ¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}µÄǰ36ÏîµÄºÍS36£»
£¨2£©È·¶¨a1=1£¬a2=2£¬a3=3£¬ÇÒan+3=3+an£¬´Ó¶ø¿ÉÇóÊýÁеÄͨÏ
£¨3£©¸ù¾Ýbn•bn+1=-21•(
)an-8£¬¿ÉµÃbn+1•bn+2=-21•(
)an+1-8£¬´Ó¶ø¿ÉµÃ{b2n}£¬{b2n-1}¶¼ÊÇÒÔ
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÓÉ´Ë¿ÉÇóÊýÁÐ{bn}µÄͨÏ½øÒ»²½È·¶¨n¡Ý13£¬nÎªÆæÊýʱ£¬|T2|£¼|T4|£¼¡£¼|T12|£¬|T12|£¾|T14|£¾¡£»nΪżÊýʱ£¬|T1|£¼|T3|£¼¡£¼|T13|£¬|T13|£¾|T15|£¾¡£¬Óɴ˿ɵýáÂÛ£®
£¨2£©È·¶¨a1=1£¬a2=2£¬a3=3£¬ÇÒan+3=3+an£¬´Ó¶ø¿ÉÇóÊýÁеÄͨÏ
£¨3£©¸ù¾Ýbn•bn+1=-21•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
½â´ð£º½â£º£¨1£©µ±k=3£¬a1a2a3=6£¬Ôòa1+a2+a3=6£®
Éècn=a3n-2+a3n-1+a3n£¬ÓÉan+3=3+an£¬µÃcn+1=cn+9£¬ËùÒÔÊýÁÐ{cn}Êǹ«²îΪ9µÄµÈ²îÊýÁУ¬
¹ÊS36=c1+c2+¡+c12=12¡Á6+
¡Á9=666£®¡£¨4·Ö£©
£¨2£©Èôk=2ʱ£¬a1+a2=a1•a2£¬ÓÖa1£¼a2£¬
ËùÒÔa1•a2£¼2a2£¬ËùÒÔa1=1£¬´Ëʱ1+a2=a2£¬Ã¬¶Ü£® ¡£¨6·Ö£©
Èôk=3ʱ£¬a1+a2+a3=a1•a2•a3£¬ËùÒÔa1•a2•a3£¼3a3£¬a1•a2£¼3£¬
ËùÒÔa1=1£¬a2=2£¬a3=3£¬Âú×ãÌâÒ⣮ ¡£¨8·Ö£©
Èôk¡Ý4ʱ£¬a1+a2+¡+ak=a1•a2•¡•ak£¬ËùÒÔa1•a2•¡•ak£¼kak£¬¼´a1•a2•¡•ak-1£¼k£¬
ÓÖÒòΪa1•a2•¡•ak-1£¾1¡Á2¡Á¡¡Á£¨k-1£©¡Ý2k-2£¾k£¬ËùÒÔk¡Ý4²»Âú×ãÌâÒ⣮¡£¨10·Ö£©
ËùÒÔ£¬a1=1£¬a2=2£¬a3=3£¬ÇÒan+3=3+an£¬
ËùÒÔa3n-2=a1+3£¨n-1£©=3n-2£¬a3n-1=a2+3£¨n-1£©=3n-1£¬a3n=a3+3£¨n-1£©=3n£¬
¹Êan=n£® ¡£¨12·Ö£©
£¨3£©ÒòΪbn•bn+1=-21•(
)an-8£¬ËùÒÔbn+1•bn+2=-21•(
)an+1-8
ËùÒÔ
=
£¬ËùÒÔ{b2n}£¬{b2n-1}¶¼ÊÇÒÔ
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
ËùÒÔbn=
¡£¨14·Ö£©
Áî|bn•bn+1|£¼1£¬¼´|-21•(
)n-8|£¼1£¬¡à(
)n-8£¼
£¬
ËùÒÔn¡Ý13£¬nÎªÆæÊýʱ£¬ÓÐ|b1•b2|£¾1£¬|b3•b4|£¾1£¬¡£¬|b11•b12|£¾1£¬|b13b14|£¼1£¬|b15•b16|£¼1£¬
´Ó¶ø|T2|£¼|T4|£¼¡£¼|T12|£¬|T12|£¾|T14|£¾¡£¬
nΪżÊýʱ£¬ÓÐ|b2•b3|£¾1£¬|b4•b5|£¾1£¬¡£¬|b12•b13|£¾1£¬|b14•b15|£¼1£¬|b16•b17|£¼1£¬
´Ó¶ø|T1|£¼|T3|£¼¡£¼|T13|£¬|T13|£¾|T15|£¾¡£¬
×¢Òâµ½T12£¾0£¬T13£¾0£¬ÇÒT13=b13•T12=3T12£¾T12£¬
ËùÒÔÊýÁÐ{bn}µÄǰnÏî»ýTn×î´óʱnµÄֵΪ13£® ¡
Éècn=a3n-2+a3n-1+a3n£¬ÓÉan+3=3+an£¬µÃcn+1=cn+9£¬ËùÒÔÊýÁÐ{cn}Êǹ«²îΪ9µÄµÈ²îÊýÁУ¬
¹ÊS36=c1+c2+¡+c12=12¡Á6+
| 12¡Á11 |
| 2 |
£¨2£©Èôk=2ʱ£¬a1+a2=a1•a2£¬ÓÖa1£¼a2£¬
ËùÒÔa1•a2£¼2a2£¬ËùÒÔa1=1£¬´Ëʱ1+a2=a2£¬Ã¬¶Ü£® ¡£¨6·Ö£©
Èôk=3ʱ£¬a1+a2+a3=a1•a2•a3£¬ËùÒÔa1•a2•a3£¼3a3£¬a1•a2£¼3£¬
ËùÒÔa1=1£¬a2=2£¬a3=3£¬Âú×ãÌâÒ⣮ ¡£¨8·Ö£©
Èôk¡Ý4ʱ£¬a1+a2+¡+ak=a1•a2•¡•ak£¬ËùÒÔa1•a2•¡•ak£¼kak£¬¼´a1•a2•¡•ak-1£¼k£¬
ÓÖÒòΪa1•a2•¡•ak-1£¾1¡Á2¡Á¡¡Á£¨k-1£©¡Ý2k-2£¾k£¬ËùÒÔk¡Ý4²»Âú×ãÌâÒ⣮¡£¨10·Ö£©
ËùÒÔ£¬a1=1£¬a2=2£¬a3=3£¬ÇÒan+3=3+an£¬
ËùÒÔa3n-2=a1+3£¨n-1£©=3n-2£¬a3n-1=a2+3£¨n-1£©=3n-1£¬a3n=a3+3£¨n-1£©=3n£¬
¹Êan=n£® ¡£¨12·Ö£©
£¨3£©ÒòΪbn•bn+1=-21•(
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔ
| bn+2 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔbn=
|
Áî|bn•bn+1|£¼1£¬¼´|-21•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 21 |
ËùÒÔn¡Ý13£¬nÎªÆæÊýʱ£¬ÓÐ|b1•b2|£¾1£¬|b3•b4|£¾1£¬¡£¬|b11•b12|£¾1£¬|b13b14|£¼1£¬|b15•b16|£¼1£¬
´Ó¶ø|T2|£¼|T4|£¼¡£¼|T12|£¬|T12|£¾|T14|£¾¡£¬
nΪżÊýʱ£¬ÓÐ|b2•b3|£¾1£¬|b4•b5|£¾1£¬¡£¬|b12•b13|£¾1£¬|b14•b15|£¼1£¬|b16•b17|£¼1£¬
´Ó¶ø|T1|£¼|T3|£¼¡£¼|T13|£¬|T13|£¾|T15|£¾¡£¬
×¢Òâµ½T12£¾0£¬T13£¾0£¬ÇÒT13=b13•T12=3T12£¾T12£¬
ËùÒÔÊýÁÐ{bn}µÄǰnÏî»ýTn×î´óʱnµÄֵΪ13£® ¡
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬È·¶¨ÊýÁеÄÐÔÖÊÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿