题目内容
设向量
=(cos
, sin
),
=(cos
, -sin
),其中θ∈[0,
].
(1)求
的最大值和最小值;
(2)若|k
+
|=
|
-k
|,求实数k的取值范围.
| a |
| 3θ |
| 2 |
| 3θ |
| 2 |
| b |
| θ |
| 2 |
| θ |
| 2 |
| π |
| 3 |
(1)求
| ||||
|
|
(2)若|k
| a |
| b |
| 3 |
| a |
| b |
(1)
•
=(cos
, sin
)•(cos
, -sin
)=cos
cos
-sin
sin
=cos2θ.
|
+
|=
=2cosθ
于是
=
=
=cosθ-
.
因为θ∈[0,
],所以cosθ∈[
, 1].
故当cosθ=
即θ=
时,
取得最小值-
;当cosθ=1即θ=0时,
取得最大值
.
(2)由|ka+b|=
|a-kb|得|ka+b|2=3|a-kb|2?k2+1+2kcos2θ=3(1+k2)-6kcos2θ?cos2θ=
.
因为θ∈[0,
],所以-
≤cos2θ≤1.
不等式-
≤
≤1?
解得2-
≤k≤2+
或k=-1,
故实数k的取值范围是[2-
, 2+
]∪{-1}.
| a |
| b |
| 3θ |
| 2 |
| 3θ |
| 2 |
| θ |
| 2 |
| θ |
| 2 |
| 3θ |
| 2 |
| θ |
| 2 |
| 3θ |
| 2 |
| θ |
| 2 |
|
| a |
| b |
(
|
于是
| a•b |
| |a+b| |
| cos2θ |
| 2cosθ |
| 2cos2θ-1 |
| 2cosθ |
| 1 |
| 2cosθ |
因为θ∈[0,
| π |
| 3 |
| 1 |
| 2 |
故当cosθ=
| 1 |
| 2 |
| π |
| 3 |
| a•b |
| |a+b| |
| 1 |
| 2 |
| a•b |
| |a+b| |
| 1 |
| 2 |
(2)由|ka+b|=
| 3 |
| k2+1 |
| 4k |
因为θ∈[0,
| π |
| 3 |
| 1 |
| 2 |
不等式-
| 1 |
| 2 |
| k2+1 |
| 4k |
|
解得2-
| 3 |
| 3 |
故实数k的取值范围是[2-
| 3 |
| 3 |
练习册系列答案
相关题目