题目内容
对于实数
和
,定义运算“*”:
,设
,且关于x的方程
恰有三个互不相等的实数根,则实数
的取值范围是( )
| A. | B. | C. | D. |
A
解析试题分析:由 2x-1≤x-1 可得 x≤0,由 2x-1>x-1 可得 x>0.
∴根据题意得f(x)=
.
即 f(x)=
,![]()
画出函数的图象,从图象上观察当关于x的方程为f(x)=a(a∈R)恰有三个互不相等的实数根时,
函数的图象和直线y=a有三个不同的交点.
再根据函数的极大值为f(
)=
,
可得a的取值范围是(0,
),故选 A.
考点:本题主要考查学习能力,分段函数的概念,二次函数的图象和性质。
点评:中档题,关键是理解新定义内容,转化得到分段函数的解析式,利用二次函数的图象和性质,研究方程根的情况。
练习册系列答案
相关题目
“![]()
”是“![]()
”的
| A.充分不必要条件 | B.必要不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |
下列函数中,在其定义域内既是奇函数又是减函数的是
| A. | B. | C. | D. |
三个数
的大小关系为( )
| A. | B. |
| C. | D. |
设
的值为 ( )
| A.0 | B.1 | C.2 | D.3 |
设
,
,
(其中
为自然对数的底数),则
| A. | B. | C. | D. |
若函数
在区间
上的最大值是最小值的
倍,则
的值为( )
| A. | B. | C. | D. |
已知定义在R上的函数
满足
且
,
,则
等于( )
| A. | B. | C. | D. |