题目内容
如图,在直三棱柱ABC—A1B![]()
(1)证明:ED为异面直线BB1与AC1的公垂线;
(2)设AA1=AC=2AB,求二面角A1—AD—C1的大小.
(1)证明:如图,建立直角坐标系O—xyz,其中原点O 为AC的中点.?
![]()
设A(a,0,0),B(0,b,0),B1(0,b,2c).?
则C(-a,0,0),C1(-a,0,2c),E(0,0.c),D(0,b,c).?
=(0,b,0),
=(0,0,2c).?
·
=0,∴ED⊥BB1.?
又
=(-2a,0,2c),
·
=0,?
∴ED⊥AC1,
∴ED是异面直线BB1与AC1的公垂线.
(2)解:不妨设A(1,0,0)?
则B(0,1,0),C(-1,0,0),A1(1,0,2),?
=(-1,-1,0),
=(-1,1,0),
=(0,0,2)?
·
=0,
·
=0.?
即BC⊥AB,BC⊥AA1.
又AB∩AA1=A,?
∴BC⊥面A1AD.?
又E(0,0,1),D(0,1,1),C(-1,0,0).?
=(-1,0,-1),
=(-1,0,1),
=(0,1,0),?
·
=0,
·
=0,即EC⊥AE,EC⊥ED.?
又AE∩ED=E,?
∴EC⊥面C1AD.?
cos〈
,
〉=
=
,即得
和
的夹角为60°.?
∴二面角A1—AD—C1为60°.
练习册系列答案
相关题目