题目内容

如图,在直三棱柱ABC—A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.

(1)证明:ED为异面直线BB1与AC1的公垂线;

(2)设AA1=AC=2AB,求二面角A1—AD—C1的大小.

(1)证明:如图,建立直角坐标系O—xyz,其中原点O 为AC的中点.?

设A(a,0,0),B(0,b,0),B1(0,b,2c).?

则C(-a,0,0),C1(-a,0,2c),E(0,0.c),D(0,b,c).?

=(0,b,0),=(0,0,2c).?

·=0,∴ED⊥BB1.?

=(-2a,0,2c), ·=0,?

∴ED⊥AC1

∴ED是异面直线BB1与AC1的公垂线.

(2)解:不妨设A(1,0,0)?

则B(0,1,0),C(-1,0,0),A1(1,0,2),?

=(-1,-1,0),=(-1,1,0),=(0,0,2)?

·=0,·=0.?

即BC⊥AB,BC⊥AA1.

又AB∩AA1=A,?

∴BC⊥面A1AD.?

又E(0,0,1),D(0,1,1),C(-1,0,0).?

=(-1,0,-1),=(-1,0,1),=(0,1,0),?

·=0,·=0,即EC⊥AE,EC⊥ED.?

又AE∩ED=E,?

∴EC⊥面C1AD.?

cos〈,〉==,即得的夹角为60°.?

∴二面角A1—AD—C1为60°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网