题目内容

设直线y=2x-4与抛物线y2=4x交于A,B两点(点A在第一象限).
(Ⅰ)求A,B两点的坐标;
(Ⅱ)若抛物线y2=4x的焦点为F,求cos∠AFB的值.
分析:(Ⅰ)由直线y=2x-4与抛物线y2=4x,消y得一元二次方程,解方程,即可确定A,B两点的坐标;
(Ⅱ)解一:确定
FA
=(3,4)
FB
=(0,-2),利用向量的夹角公式,可求cos∠AFB的值.
解二:求出|AB|、|FA|、|FB|=2,利用余弦定理,可求cos∠AFB的值.
解答:解:(Ⅰ)由
y2=4x
y=2x-4
,消y得:x2-5x+4=0…(3分)
解出x1=1,x2=4,于是,y1=-2,y2=4
因点A在第一象限,所以A,B两点坐标分别为A(4,4),B(1,-2)…(6分)
(Ⅱ)解一:抛物线y2=4x的焦点为F(1,0)…(8分)
由(Ⅰ)知,A(4,4),B(1,-2),
FA
=(3,4)
FB
=(0,-2)…(10分)
于是,cos∠AFB=
FA
FB
|
FA
|•|
FB
|
=
(3,4)•(0,-2)
5×2
=-
4
5
…(14分)
解二:抛物线y2=4x的焦点为F(1,0)…(8分)
由两点间的距离公式可得|AB|=
(4-1)2+(4+2)2
=3
5
,|FA|=5,|FB|=2…(11分)
由余弦定理可得cos∠AFB=
|FA|2+|FB|2-|AB|2
2|FA||FB|
=
25+4-45
2×5×2
=-
4
5
…(14分)
点评:本题考查直线与抛物线的位置关系,考查角的计算,正确运用向量知识、余弦定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网