题目内容

1.已知($\root{3}{x}$+x22n的展开式的二项式系数之和比(3x-1)n的展开式的二项系数之和大992.求(2x+$\frac{1}{x}$)2n的展开式中:
(1)常数项;
(2)系数最大的项.

分析 (1)由条件求得n=5,利用由通项公式可得常数项;
(2)设第r+1项的系数最大,由通项公式可得$\left\{\begin{array}{l}{{C}_{10}^{r}•{2}^{10-r}≥{C}_{10}^{r+1}•{2}^{9-r}}\\{{C}_{10}^{r}•{2}^{11-r}≥{C}_{10}^{r-1}•{2}^{11-r}}\end{array}\right.$,求得 r=3,可得第4项的系数最大,再利用二项式展开式的通项公式,求得该项.

解答 解:(1)由题意可得 22n=2n+992,即(2n-32)(2n+31)=0,∴2n=32,n=5.
Tr+1=${C}_{10}^{r}$•210-r•x10-2r,令10-2r=0,可得r=5
∴Tr+1=${C}_{10}^{r}$•210-r=252.
(2)设第r+1项的系数最大,∵Tr+1=${C}_{10}^{r}$•210-r•x10-2r
∴$\left\{\begin{array}{l}{{C}_{10}^{r}•{2}^{10-r}≥{C}_{10}^{r+1}•{2}^{9-r}}\\{{C}_{10}^{r}•{2}^{11-r}≥{C}_{10}^{r-1}•{2}^{11-r}}\end{array}\right.$,
求得$\frac{8}{3}$≤r≤$\frac{11}{3}$,∴r=3,
故第4项的系数最大,该项为T4=${C}_{10}^{3}$•27•x4=15360x4

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网