搜索
题目内容
设函数f (x)="2cosx" (cosx+
sinx)-1,x∈R
小题1:求f (x)的最小正周期T;
小题2:求f (x)的单调递增区间.
试题答案
相关练习册答案
………… 6分
小题1:
. ………… 9分
小题2:由2kp –
£ 2x +
£ 2kp +
, 得:kp –
£ x £ kp +
(k ÎZ),
f ( x ) 单调递增区间是[kp –
,kp +
](k ÎZ) . ……………… 12
同答案
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
设二次函数
,已知不论
为何实数恒有
.
(1)求证:
;
(2)求证:
;
(3)若函数
的最大值为8,求
的值.
已知f(x)=
(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
已知a>0 且a≠1 ,f (log
a
x ) =
(x -
)
(1)求f(x);
(2)判断f(x)的奇偶性与单调性;
(3)对于f(x) ,当x ∈(-1 , 1)时 , 有
,求m的集合M .
(1)若
,求
的单调区间;
(2)若
,设
在区间
的最小值为
,求
的表达式;
设
在
上是偶函数,在区间
上递增,且有
,求
的取值范围.
已知函数
在
上的最大值为3,最小值为2,求实数
的取值范围.
若函数
f
(
x
)=
ax
3
+
bx
2
+
cx
+
d
满足
f
(0)=
f
(
x
1
)=
f
(
x
2
)="0" (0<
x
1
<
x
2
),且在[
x
2
,+∞
上单调递增,则
b
的取值范围是_________.
如果函数
,且
在区间(0,1)上单调递增,并且函数
的零点都在区间[-2,2]内,则b的一个可能取值是__________________。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案