题目内容

已知P={x|1≤x≤9,x∈N},记f(a,b,c,d)=ab-cd,(其中a,b,c,d∈P),例如:f(1,2,3,4)=1×2-3×4=-10.设u,v,x,y∈P,且满足f(u,v,x,y)=39和f(u,y,x,v)=66,则有序数组(u,v,x,y)是______.
由已知f(u,v,x,y)=39和f(u,y,x,v)=66,得
uv-xy=39
uy-xv=66
两式作差可得(u+x)(y-v)=27
∵27=3×9
∴u+x=9,y-v=3,代入数验证得(u,v,x,y)=(8,6,1,9)
故应填(8,6,1,9).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网