题目内容
已知随机变量
=
,且D
=2,则D
=________.
练习册系列答案
相关题目
为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 10 | 18 | 22 | 25 | 20 | 5 |
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
根据已知条件完成下面的2×2列联表,并据此资料判断我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷 | 歌迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:
P(K2 ≥ k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
为样本容量.
某中学为研究学生的身体素质与课外体育锻炼时间的关系,从该校抽取200名学生对其课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼 的时间(分钟) |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外课外体育运动时间在
上的学生评价为“课外体育达标”.
(Ⅰ)请根据上述表格中的统计数据填写下面
列联表,并通过计算判断是否能在犯错误的概率不超过
的前提下认为 “课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率.现在从该校全体学生(人数很多)中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为
,求
的数学期望和方差.
参考公式:
,其中
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |