题目内容
1.已知在等比数列{an}中,a4=4,则a5(a1+2a3)+a1a9最小值为64.分析 根据等比数列的定义与通项公式中,化简a5(a1+2a3)+a1a9,再利用基本不等式,即可求出最小值.
解答 解:在等比数列{an}中,a4=4,
a5(a1+2a3)+a1a9=a5a1+2a5a3+a1a9
=${{a}_{3}}^{2}$+2${{a}_{4}}^{2}$+${{a}_{5}}^{2}$
=${{a}_{3}}^{2}$+${{a}_{5}}^{2}$+2×42≥2a3a5+32
=2${{a}_{4}}^{2}$+32
=2×42+32
=64.
故答案为:64.
点评 本题考查了等比数列的定义与通项公式的应用问题,也考查了利用基本不等式求最小值的应用问题,是基础题目.
练习册系列答案
相关题目
12.在△ABC中,PQ分别是AB,BC的三等分点,且AP=$\frac{1}{3}$AB,BQ=$\frac{1}{3}$BC,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{PQ}$=( )
| A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | B. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | C. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$ | D. | -$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$ |
1.参数方程$\left\{\begin{array}{l}x=sin\frac{α}{2}+cos\frac{α}{2}\\ y=\sqrt{2+sinα}\end{array}\right.,(α$为参数)的普通方程为( )
| A. | y2-x2=1 | B. | x2-y2=1 | C. | ${y^2}-{x^2}=1(|x|≤\sqrt{2})$ | D. | ${x^2}-{y^2}=1(|x|≤\sqrt{2})$ |