搜索
题目内容
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且平面CDE⊥平面ABCD,求证:CE⊥平面ADE.
试题答案
相关练习册答案
证明:平面ABCD⊥平面CDE,ABCD为矩形,所以AD⊥平面CDE,
因为点E在直径为CD的半圆上,所以CE⊥ED,
所以CE⊥平面ADE.
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
如图,已知ABCD是边长为a的正方形,E,F分别是AB,AD的中点,CG⊥面ABCD,CG=a.
(1)求证:BD∥EFG;
(2)求点B到面GEF的距离.
如图,已知ABCD是底角为30°的等腰梯形,AD=2
3
,BC=4
3
,取两腰中点M、N分别交对角线BD、AC于G、H,则
AG
•
AC
=( )
A.3
B.4
C.5
D.6
如图,已知ABCD是边长为1的正方形,AF⊥平面ABCD,CE∥AF,CE=λAF(λ>1).
(Ⅰ)证明:BD⊥EF;
(Ⅱ)若AF=1,且直线BE与平面ACE所成角的正弦值为
3
2
10
,求λ的值.
如图,已知ABCD是矩形,PD⊥平面ABCD,PB=2,PB与平面ABCD所成的角为30°,PB与平面PCD所成的角为45°,求:
(1)PB与CD所成角的大小;
(2)二面角C-PB-D的大小.
如图,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求证:平面AEC⊥平面AFC;
(Ⅱ)求直线EC与平面BCF所成的角;
(Ⅲ)问在EF上是否存在一点M,使三棱锥M-ACF是正三棱锥?若存在,试确定M点的位置;若不存在,说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案